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Velocity and density profiles of granular flow in channels using a lattice gas automaton

Gongwen Peng* and Takao Ohta†

Department of Physics, Ochanomizu University, Tokyo 112, Japan
~Received 18 February 1997!

We have performed two-dimensional lattice-gas-automaton simulations of granular flow between two par-
allel planes. We find that the velocity profiles have nonparabolic distributions, while simultaneously the density
profiles are nonuniform. Under nonslip boundary conditions, deviation of velocity profiles from the parabolic
form of Newtonian fluids is found to be characterized solely by ratio of maximal velocity at the center to the
average velocity, though the ratio depends on the model parameters in a complex manner. We also find that the
maximal velocity (umax) at the center is a linear function of the driving force (g) asumax5ag2d with nonzero
d in contrast with Newtonian fluids. Regarding density profiles, we observe that densities near the boundaries
are higher than those in the center. The width of higher densities~above the average density! relative to the
channel width is a decreasing function of a variable which scales with the driving force (g), energy dissipation
parameter~e!, and the width of the system (L) asgmLn/e with exponentsm51.460.1 andn50.560.1. A
phenomenological theory based on a scaling argument is presented to interpret these findings.
@S1063-651X~97!15306-5#

PACS number~s!: 05.20.Dd, 47.50.1d, 47.20.2k, 46.10.1z
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I. INTRODUCTION

Granular materials exhibit many interesting phenome
The segregation of particles@1–4#, heap formation, and con
vection cells under vibration@5–8#, and anomalous soun
propagation@9# are just a few examples. Such phenome
occur because the dynamical responses of granular medi
quite complex and different from those of usual solids, fl
ids, and gases@10–14#. Considering the complexity in the
dynamics, one is tempted to study first the granular mater
in simple geometries and proceed then to more complica
situations. However, even in the simplest geometries suc
hoppers and tubes, their flow under uniform external driv
force ~such as gravity! still shows complex dynamics@15–
21#. For tubes, one can observe density waves in gran
flow when the width of the tubes is narrow enough. Here
friction of the wall, as well as the dissipation among t
grains themselves, plays an important role in the occurre
of density waves.

The purpose of this paper is to study granular flow
channels~different from tubes with wider widths! and com-
pare it with flow of Newtonian fluids. A comparison betwee
granular flow and ordinary fluids is useful because it lin
with the knowledge that we have gained before. Besides
obvious contrast between the discretness of granular ma
als and continuum of fluids, a key difference is that collisio
of particles in granular flow are inelastic~energy dissipative!.
In fluids, channel flow is a typical and fundamental topic
rheology~Poiseuille flow!. Under the nonslip boundary con
ditions valid for viscous fluids, Newtonian fluids have
parabolic velocity profile across the channel. To claim t
granular flow is non-Newtonian flow, a nonparabolic velo
ity profile is a clear and fundamental evidence. In this pap
we will report the nonparabolic shape of velocity profiles a
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nonuniformly distributed density profiles in granular chann
flow.

Study on granular materials has a long history in en
neering. Much engineering literature is devoted to und
standing how to deal with these materials. However, it
only after the pioneering work of Bagnold@22# that theoret-
ical work has begun to progress. Instead of focusing on
detailed dynamics of individual particles, granular hydrod
namics@23,24# treats the granular media like ‘‘fluids.’’ One
defines a set of macroscopic quantities like particle dens
velocity, and granular temperature. By assuming local eq
librium @25# one can write down the equations based on m
conservation, momentum conservation, and energy bala
These equations are similar to the Navier-Stokes equat
for fluids.

Using the idea of hydrodynamics, Savage@26# has studied
the channel flow of cohesionless granular materials and
tained theoretically the velocity profiles. He obtained the v
locity profiles under nonslip boundary conditions for diffe
ent parameterR ~which depends on the system paramet
and on the density at the channel center!. In the limiting case
of R50 ~which corresponds to the situation where dens
are uniformly distributed!, the nondimensional velocity pro
file has the form ofv512x3/2, wherev is the velocity nor-
malized to 1 with respect to the maximal velocity at t
center,x is the distance from the channel center divided
the half-width of the channel. For largerR, the velocity pro-
files become more blunted~but without simple analytical
form!. Savage@26# also performed experiments to measu
the velocity profile and found that his experiments cor
sponded to the case ofR50.3. Since he did not intend to
compare his results with those for fluids, his theory did n
recover the parabolic velocity profile in any limiting case,
he included from the beginning that the viscosity is prop
tional to the shear rate@22#. However, we find from his ex-
perimental data that the velocity is very close to having
parabolic shape.

In the following we will report our numerical results o
6811 © 1997 The American Physical Society
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6812 55GONGWEN PENG AND TAKAO OHTA
the velocity profiles. We find that when the dissipation
very weak the velocity profiles are close to the parabo
shape, while in the other cases they are more blunted
the parabolic form. As mentioned above, we realize that
key difference between fluids and granular flow is that
latter is energy dissipative. Therefore, when the param
controlling the energy dissipation is switched off, the theo
should recover that of fluids. Furthermore, we observe
density near the boundaries is higher than those at the c
nel center. Our numerical findings are consistent with
earlier experimental observations by Sooet al. @27#: ‘‘The
nature of the concentration, mass flows, and velocity dis
butions of solid particles is such that the concentration
creases toward the wall of the pipe, mass flow decrea
toward the wall, and velocity is less than or equal to that
the stream of the core.’’

In this paper we study the channel flow by compu
simulations. Since a general theory for granular media is
yet available, people have used various computational m
ods to get a better understanding about the complicated r
logical behavior of granular media. Among the differe
methods are molecular dynamics~MD! @2,18,29,30#, Monte
Carlo simulations@4,31#, the diffusing void model@32#,
event driven algorithms@33#, and cellular automaton@34#. So
far, the most widely used method is MD@35#, which simu-
lates the granular materials on a ‘‘microscopic’’ level~the
grain’s level!. MD has been recognized to be very success
in simulating granular materials@36#. MD needs, however
much computer time to give reasonable results. To calcu
the velocity and density profiles one needs a long-time a
age in order to get reasonable statistics.

The same situation was also faced in classical fluid m
chanics some years ago when Frisch, Hasslacher,
Pomeau@37# proposed lattice-gas automata~LGA! as a novel
alternative to the direct solution of the equation of motio
As a sort of primitive molecular-dynamics system LGA o
fers the advantage of guaranteed numerical stability cou
with extreme computational simplicity. The basic idea b
hind LGA is that a properly defined cellular automaton w
appropriate conservation laws should lead to the Nav
Stokes equations. A detailed comparison of simulational
sults from LGA and the well-established theory of Newto
ian fluids in Poiseuille flow can be found in Refs.@38, 39#.
The main check to the LGA for the Newtonian dynami
was the parabolic velocity profile in channel flows@38–40#.

In this paper we employ the LGA model of Ref.@20# to
study the velocity and density profiles in granular chan
flow. The LGA of Ref.@20# is an extension of the LGA o
usual fluids by including energy dissipation among the p
ticles into the model. As emphasized above, energy diss
tion is a major mechanism by which granular flow diffe
from ordinary fluids. The LGA models for granular materia
were successful in simulating granular flow@20,41–43#.

This paper is organized as follows. We describe the mo
in some detail in Sec. II. The results obtained by simulatio
are presented in Sec. III. A phenomenological argumen
made in Sec. IV to understand the numerical results. A
cussion is contained in Sec. V.

II. SIMULATIONAL MODEL

We consider an LGA at integer time stepst50,1,2,...
with N particles located at the sites of a two-dimensio
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triangular lattice. The arrangement of the triangle lattice
depicted in Fig. 1~a!. At each site there are seven Boole
states which refer to the velocitiescW k(k50,1,2,...,6). Here
cW k(k51,2,...,6) are thenearest neighboring~NN! lattice

vectors andcW050W refers to the rest~zero velocity! state.
Each state can be either empty or occupied by a single
ticle. Therefore, the number of particles per site has a m
mal value of 7 and a minimal value of 0. In this paper we u
the number of particles per site as density which can the
fore be greater than 1.0. The time evolution of the LG
consists of a collision step and a propagation step. In
collision step particles change their velocities due to co
sions and in the subsequent propagation step particles m
in the directions of their velocities to the NN sites, whe
they collide again.

The system is updated in parallel. Only the specified c
lisions shown in Fig. 1 can deviate the trajectories of p
ticles. All collisions conserve mass and momentum.

For two- and three-body collisions, we have the proba
listic rules shown in Fig. 1~b!. The probability that a configu-
ration may take place is shown next to the configuration
the parametere is nonzero, it means that energy can be d
sipated in the collision.

Collisions with rest particles may produce more than o
rest particle on that site. This is allowed temporarily, as
Fig. 1~c!. However, immediately after the collision step, th
extra rest particles randomly hop to NN sites until they fi
a site with no rest particle and there they stop.

We use no-slip boundary conditions at the channel w
that are parallel to they axis and periodic boundary cond
tions along the channel. No-slip conditions are employed
allowing that any particle colliding with the wall along an
of the three possible directions bounces back into the inc
ing direction.

We incorporate the driving force, namely, gravity, in th
way that Kadanoff, McNamara, and Zanetti@38# have used.
The direction of gravity is along they axis, i.e., the down-
ward arrow in Fig. 1~a!. After each time step we randoml
select a lattice site and, if possible, apply one of the forc
rules: ~i! a rest particle goes into motion with equal pro
ability along one of the two lattice directions which form a
angle of 30° with the direction of gravity;~ii ! a moving
particle changes its velocity by a unit vector along the dir
tion of gravity if the resulting vector is possible on the tr
angle lattice used. Each successful application of a forc
rule adds one unit of momentum to the system. The forc
process is repeated until the desired amount of momen
~we label it asG! has been transfered to the system; fra
tional amounts of momentum to be added to the system
accumulated across time steps until they sum to an am
greater than 1, at which time one additional unit of mome
tum is added to the gas. The actual forcing scheme is slig
more complicated since it must compensate for inhomoge
ity in the momentum and number densities due to the m
roscopic flow ~see also Ref.@38#!. The forcing algorithm
randomly selects a lattice row and column and then searc
along that column until it finds a site where a forcing ru
may be successfully applied. This guarantees that forc
operations will be uniformly distributed across the width
the channel, despite variations in the mass and momen
densities. It is noted that the magnitude of the gravity can
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55 6813VELOCITY AND DENSITY PROFILES OF GRANULAR . . .
FIG. 1. ~a! Sketch of the two-dimensional triangle lattice. Gra
ity is along they direction. One complete hexagon is drawn.~b!
Probabilistic collision rules for two- and three-body collisions. Th
arrows represent particles and small circles stand for rest parti
The number next to a configuration is the probability that the c
figuration takes place.~c! Collision rules for moving particles with
a rest particle. Immediately after the collision, more than one
particle on a site will hop to the nearest neighboring sites rando
until they find a suitable site with no rest particle already there
be extremely large in our model system due to the follow
fact: on one hand the maximal velocity at the channel c
ter increases with the increasing gravity, on the other h
the LGA only guarantees a velocity less than unit.

III. SIMULATIONAL RESULTS

We evolve the system according to the collision rules
fined above. The initial configuration of the system is set
be random in the sense that every state~except the rest state!
of each site is randomly occupied according to a preassig
average densityr̄. We discard the configurations in the fir
period of several thousand time steps until we are sure
the system is in the steady state where energy input by g
ity is averagely equal to the energy dissipation in the syst
Figure 2 shows a typical curve of the total kinetic ener
relaxation starting from a random configuration at time s
t50.

After the kinetic energy curve becomes flat, we then ma
the necessary average over space and time as follows. L
label the particle number of statek(k50,1,2,...,6) on the
i th lattice site with coordinates (xi ,yi) at time stept as
nk(xi ,yi ,t). As depicted in Fig. 1~a!, the x coordinates of
lattice sites take values of integers and half-integers
0,1/2,1,...,L21, while the y coordinates have values o
0,1/2,1,...,M21 with M even. The total number of lattice
sites isN5LM2M /2. In this paper, we always keepM

s.
-

st
ly

FIG. 2. Total kinetic energyE vs time step by running the LGA
starting from a random initial configuration. The kinetic energy o
moving particle is taken to be a unit. The plotted curve was
tained withe50.01. The total momentum added to the system e
time is G57.0, channel widthL564, and average densityr̄
51.5.
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52L and fix the average densityr̄51.5 unless otherwise
specified.

We are interested in the density profiler(x) and velocity
profile in y-directionu(x)5Vy(x) with x integer

r~x!5
1

2TM (
t5t011

t01T

(
i51

N

(
k50

6

nk~xi ,yi ,t !d~@xi #2x!, ~1!

u~x!5
1

2TM (
t5t011

t01T

(
i51

N

(
k50

6

ck
~2!nk~xi ,yi ,t !d~@xi #2x!,

~2!

where the function@z# takes the integer value of its variab
z and functiond(z) is equal to 1 whenz50 and zero other-
wise. cW k5(ck

(1) ,ck
(2))5„cos@p(k21)/3#, sin@p(k21)/3#… for

(k51,2,...,6) are theunit vectors of the lattice bond orien
tation ~andcW050W !. We actually make average over the tw
column whosex coordinates have the same integer part, th
are columns withxi ~integer! andxi1

1
2~half-integer!; there-

fore, the normalization factor is 1/2TM, whereT is the time
period over which we make average starting from time s
t0 . T is usually several tens of thousand time steps.

As a first step, we check that when the dissipation para
etere is set to zero we recover the parabolic velocity profi
of Newtonian fluids. This is shown in Fig. 3~a! for system
sizeL564 with average densityr̄51.8. From Fig. 3~a! we
can estimate the magnitude of the kinematic viscosity eq
to 0.35 according to Ref.@38#. Meanwhile, the density profile
in Fig. 3~b! is just a flat curve, showing that density is un
formly distributed.

Figures 4~a! and 4~b! show the velocity and density pro
files when energy dissipation withe50.01 is present in the
system. We see clearly that the parabolic velocity profile
no longer kept in this case, but more blunted. In fact, a pa
bolic curve demanding the maximum value at the cen
equal to the numerical data and zero at the two bounda
deviates substantially from the numerical data. It is also
marked that the density is not uniformly distributed, in co
trast with those of Newtonian fluids.

Regarding the velocity profile, we can generally write t
following equation:

u~x!5umax~e,g,L !ũS xL ,eLs1,gLs2D , ~3!

whereumax is the maximum velocity. Here gravity is taken
be system size independent quantityg5G/N, whereG is the
total amount of momentum added to the system after e
time step andN is the total number of lattice sites.

A simple measure of the flatness of velocity profiles is
ratio g5umax/ū, where ū is the mean value ofu(x). It is
equal to 1.5 for Poiseuille flow of Newtonian fluids and 1
for a perfectly flat profile. Note thatg can be written as

g215E
0

1

ũ~x,eLs1,gLs2!dx. ~4!

Figure 5 displays the ratiog versus gravity for two differ-
ent dissipation parameterse50.01 ande50.02 with differ-
ent channel widths. From Fig. 5 we seeg depends on the
channel width, degrees of dissipation, and gravity. We fi
y
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FIG. 3. ~a! Velocity profile for the LGA withe set to zero. Here
the total momentum added to the system each time isG51.0, chan-
nel widthL564, and average densityr̄51.8. The curve is the best
~least-square! fit to the numerical data using a polynomial fitting
rountine up to second order.~b! Density profile corresponding to
~a!.
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55 6815VELOCITY AND DENSITY PROFILES OF GRANULAR . . .
FIG. 4. ~a! Velocity profile for the LGA withe50.01. Here the
total momentum added to the system each time isG57.0, channel
width L564, and average densityr̄51.5. The upper curve is the
best~least-square! fit to the numerical data using a polynomial fi
ting rountine up to second order and the lower curve is a parab
curve by demanding the maximal value at the center equal to
numerical data and zero at the two boundaries.~b! Density profile
corresponding to~a!.
that g can be solely used to characterize the shape func
ũ(x,eLs1,gLs2). Taking two sets of different paramete
which leads to almost identicalg, e.g.,$e150.01,G158.0,
L1564% and $e250.02, G2510.0, L2548% resulting g1
51.275 94 andg251.282 98, we show in Fig. 6 that the
shape functions are almost identical. Note that both set
parameters$e,g,L% share no common value but their resu
ing g are almost identical. For comparison, the velocity p
file for a different value ofg51.359 06 is also plotted in Fig
6. As expressed in Eq.~4!, g21 is the 0th moment of the
distribution functionũ(x). Figure 6 tells us that the distribu
tion function ũ has such a property that as long as the
moment is determined higher order moments are determi
This may suggest that the parameters$e,g,L% combine to
give a scalar on whichũ(x) depends solely.

In order to fit the velocity data, we have tried the polyn
mial fitting routines. We find that a polynomial up to a
order of 4 is not sufficient; most of the data can be fitted
a polynomial up to an order of 6:

ũ~x!5v02v2~x2c!22v4~x2c!42v6~x2c!6, ~5!

wherex is the normalized coordinate in the interval@0:1# and
c is the coordinate of the channel center. The three velo
profiles are fitted using Eq.~5! in Fig. 6. In the next section
which is based on a phenomenological theory, we will p
pose a formula for velocity profiles where the dependen
of these fitting parameters on the model parame
$e,g,L% are clearly expressed and we will check our theo
by the simulational data.

lic
e

FIG. 5. Ratio g5umax/ū vs gravity g for different channel
widthsL532, 48, 64, 128~from top to bottom! with e50.01 ~data
points connected by solid lines! ande50.02~data points connected
by dashed lines!.
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6816 55GONGWEN PENG AND TAKAO OHTA
For umax(e,g,L), we find that it is a linear function ofg as
umax(e,g,L)5ag2d with nonzerod. Figure 7 displays four
curves ofumax for different channel widths but with fixede.
The slopea depends onL but not asL2 which is valid for
Newtonian fluids. If we increasee, the value ofa decreases
Nonzerod means that the driving force must exceed a n
zero threshold (d/a) in order to drive the granular medi
into motion. From the statistics we are not sure whetherd is
independent ofL but one can see from Fig. 7 that the depe
dence is very weak, if any. Furthermore, although not sho
in the figure, we find thatd have a tendency to approach ze
ase approaches zero, which recovers the case of Newto
fluids.

Regarding the density profile, we observe that densi
near the walls are higher than those at the channel cente
contrast to the uniform density distribution of Newtonia
fluids. A simple way to characterize the spatial variation is
define a width over which densities are higher than the
erage density. We plot such a width~D! divided by channel
width in Fig. 8~a! against gravityg for different system sizes

FIG. 6. Normalized shape functionũ(x) as a function ofx in the
interval @0:1#. Two curves corresponding to$e50.02, L548, G
510.0(g50.004 340 28)% ~L! and $e50.01, L564, G58.0(g
50.001 953 12)% ~1! are almost identical, though the two set p
rameters share no common value. Another curve~h! corresponding
to $e50.02, L548,G55.0(g50.002 170 14)% is shown for com-
parison. This curve shares two parameterse andL with the curve
~L! but their difference is obvious. Lines are best fit to the nume
cal data using a polynomial fitting rountine up to 6th order as
pressed in Eq.~5!. The fitting parameters are$v050.999 664,v2
51.257 89, v4520.516 35, v6553.8739, c50.493 339% ~L!,
{ v050.998 367, v251.353 65, v4521.837 73, v6555.4401, c
50.494 999% ~1!, and $v050.997 691, v251.814 31, v4
54.977 92,v6520.8538,c50.493 152% ~h!.
-

-
n

an

s
in

o
v-

and different dissipation parameters. Generally,D/L de-
creases with increasingg and increasingL but increases with
increasinge. The scattered data in Fig. 8~a! can be scaled to
one curve, as shown in Fig. 8~b!, where we plotD/L versus
gmLn/e. We find that the exponents arem51.460.1 andn
50.560.1.

We have checked that the above observations do
change their properties qualitatively as we change the av
age densityr̄. The scaling exponentsm andn are indepen-
dent of the average density.

IV. PHENOMENOLOGICAL THEORY

In this section we present a phenomenological theory
interpret our numerical findings. We note that there are t
important system parameters, namely,g and e : g is the
velocity change per particle per time step ande is energy
dissipation per particle per time step. Therefore, using
mension analysis, we have

g5
dV

dt
, e5

dE

dt
, ~6!

whereV andE are characteristic velocity and kinetic energ
of a particle. Hereafter we set the particle’s mass to uni
SinceV2;E, gV/e must be dimensionless.

We may construct a quantity that has a dimension of v
locity by using the channel widthL as

V5AgL. ~7!

-
-

FIG. 7. umax vs gravity g for four different channel widthsL
L532, 48, 64, 128~from bottom to top! and fore50.02. The lines
are least-squares linear fit to the numerical data. Four lines cut
vertical axis at nonzero positions that are very close to each ot



n-
ro-

n

s

i-

ts.

55 6817VELOCITY AND DENSITY PROFILES OF GRANULAR . . .
FIG. 8. ~a! Width of higher densities~than average density!
relative to the channel widthD/L are plotted vs the gravityg for
different channel widths and different dissipation parameters. A
{ e50.01, L532%, B: $e50.01, L5128%, C: $e50.02,
L548%, D: $e50.02, L564%, E: $e50.02, L5128%, F: $e
50.04, L548%, G: $e50.04, L564%. ~b! Data collapse of~a!:
D/L are plotted vsgmLn/e with m51.4 andn50.5.
The above argument implies thatP defined as

P5
gV

e
5
g3/2L1/2

e
~8!

must be a fundamental dimensionless quantity. Equation~8!
is consistent with the simulations illustrated in Fig. 8~b!,
whereD/L is a function of a variable that scales asgmLn/e
with exponentsm51.460.1 andn50.560.1.

Note that whene50, the system has another dimensio
less quantity that can be derived from the Newtonian hyd
dynamics equation

g1n¹2v50, ~9!

wheren5m/r is the kinematic viscosity. The two terms i
Eq. ~9! have the same dimension; therefore,

Q5
gL2

nV
5

gL2

nAgL
5
g1/2L3/2

n
~10!

is another dimensionless quantity. Note in Eq.~10! we have
used Eq.~7!. Q is in fact the square root of the Reynold
number.

Now, we consider the maximum velocityumax at the
channel center. Simulations show thatumax is a linear func-
tion of g,

umax5ag2d. ~11!

We determine the forms ofa andd. First of all, they do
not depend ong by definition. Using Eq.~7!, a must take the
form

a5S LgD 1/2â~P,Q!. ~12!

The form of â can be determined by the following cond
tions: ~i! a ~instead ofâ! is independent ofg; ~ii ! when
e→0 (P→`), umax5gL2/n. The simplest interpolation for-
mula for â is given by

â5
1

c1P
21/31c2Q

21 , ~13!

wherec1 ,c2 are dimensionless positive numerical constan
In fact, we have

ag5AgL
1

c1S e

g3/2L1/2D
1/3

1c2
n

g1/2L3/2

5
gAL

c1S e

L1/2D
1/3

1c2
n

L3/2

. ~14!

Therefore,

a5
L

c1~eL !1/31c2n/L
. ~15!

Whene50, we recover the well-known result

:
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6818 55GONGWEN PENG AND TAKAO OHTA
umax;
gL2

n
. ~16!

Whene→`, Eq. ~15! shows

a5
L2/3

c1e
1/3. ~17!

Our numerical results also show thata decreases with in-
creasinge, in the trend of Eq.~17!. TheL2/3 is even reached
in the simulations withe50.02. This is illustrated in Fig. 9
From Eq.~15! one may see that as long ase is nonzero, the
term withc1 dominates the denominator for largeL, leading
to the validity of Eq.~17!.

Now we determined. It should vanish ate50 and be
independent ofg for any nonzero value ofe. Using again the
fact of Eq.~7!, d should be given by

d5c3AgLP21/3f ~P/Q3!5c3~eL !1/3f ~P/Q3!, ~18!

wherec3 is a positive constant. Note thatP/Q
35n3/(eL4) is

independent ofg. It seems that the form off (x) cannot be
specified phenomenologically. If we impose the fact thatd is
insensitive toL as observed in simulations,f (x) must be
f (x);x1/12 so that we have

d5c3~eL !1/3n1/4e21/12L21/35c3~en!1/4. ~19!

Now we turn to the shape functionũ(x) of velocity pro-
file. Since from the simulations we know the velocity profi
can be well fit using polynominal up to sixth order, we pr
pose phenomenologically

FIG. 9. a vs L2/3 for e50.01 ~L! ande50.02 ~1!.
ũ~x!5124u2~x21/2!2216u4~x21/2!4264u6~x21/2!6,

~20!

where the coefficientsu2 , u4 , u6 are functions ofe, g, and
L.

As expressed in Eq.~4!, the 0th moment ofũ(x) is char-
acterized byg. We find numerically that the scattered data
g in Fig. 5 can be collapsed to one curve by using a com
nation of the dimensionless quantitiesP and Q: Q4/P
5g1/2L11/2e/n4. Figure 10 illustrates this point by plottingg
againstG51025g1/2L11/2e for the data of Fig. 5. We propos
that the coefficientsu2 , u4 , u6 in Eq. ~20! are functions ofG
and we determine their forms as follows.

Setting x50 in Eq. ~20! and requiringũ(0)5ũ(1)50,
we know thatu2 ,u4 ,u6 are related by

u21u41u651. ~21!

So we need only to determineu2 andu4 , which must satisfy
the following conditions: ~i! when e50, u251, u450
which recovers the parabolic velocity profile for fluids;~ii !
whene→`, the velocity profile becomes completely flat an
thereforeu250, u450. We proposeu2 andu4 as functions
of G,

u25
1

11dG
, ~22!

FIG. 10. Data collapse Fig. 5:g vs G51025g1/2L11/2e. Sym-
bols are the same as those in Fig. 5. Solid line is the best fit to
numerical data using Eq.~24!. The logarithm of horizontal axis is
made for clarity of displaying data. The fitting parameters in E
~24! ared50.009 774 8,e520.350 605 andh50.002 689 41.
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u45
eG

11hG2 , ~23!

whered, e, h are constants. Substituting the above expr
sions into Eq.~20! and integrating that equation we obtain

g215
90220u226u4

105
5

902
20

11dG
2

6eG

11hG2

105
. ~24!

We check the above expressions by fitting the numerical d
of g using Eq.~24!. This is shown in Fig. 10. One sees th
the fitting is very well except forg close to 1.0@correspond-
ing to rather flat velocity profiles where (x21/2)8 might be
necessary in Eq.~20!#. Finally we make a remark that veloc
ity profile such thatũ(x)512uv(x21/2)v24u2(x21/2)2

with 0,v,2 is not in accord withg shown in Fig. 5.

V. DISCUSSION

In this paper we have numerically studied the granu
flow in channels using a two-dimensional lattice gas autom
ton model. We have explored the dependences of velo
profile on dissipation, gravity, and channel width and co
pared them with those of Newtonian fluids. Parabolic vel
ity profile is no longer valid as long as there is energy dis
pation in the system. However, the deviation from parabo
profile depends on the degree of energy dissipation i
smooth way~there is no sharp transition neare50!. This
may explain the fact that the experimental data of Sav
@26# is close to a parabolic velocity profile, though he did n
notice this point in his paper. However, the velocity profi
can also be very flat depending on the dissipation and
channel width. The observation of Soo@27# confirms this
point experimentally. Our results also show that the veloc
profiles are more blunted than the parabolic form. We do
find any velocity profile that is sharper than parabolic sha
~i.e. our g are all less than 1.5!, in contrast with Savage’s
theory @26#, which predicted that profiles sharper than pa
bolic ones are possible to exist. The maximal velocity at
center is a linear function of gravity asumax5ag2d but with
nonzerod. Herea behaves no longer asL2 as for Newtonian
fluids. Density profiles are no longer uniform but are high
e

e

od
-

ta

r
-
ty
-
-
i-
c
a

e
t

e

y
t
e

-
e

r

near the boundaries than at the center. From the simulat
we note that this nonuniformity is caused by the rest partic
while the moving particles are distributed uniformly. Th
may have a link to the clustering of dissipative systems@44#.
The boundaries that are represented by rough walls see
serve as clustering seeds due to the nonslip boundary co
tions we used. An earlier experiment by Soo@27# also
showed that density increases toward the wall, as we
here. It is interesting to note that the recent experimen
Pouliquen and Gutfraind@45# showed that density near th
wall is lower than that at the center. We attribute this co
tradiction with our numerical results to the different boun
ary conditions. In their experiments, considerable slip velo
ties were observed at the walls. Both increasing a
decreasing density profiles toward the walls in different
gimes were obtained theoretically in Ref.@28# and both kinds
of experimental evidences were cited there.

In our model we find that the width of the region of high
densities~than the average density! relative to the channe
width is a decreasing function of a variable which scales w
the driving force (g), energy dissipation parameter~e!, and
the width of the system (L) as gmLn/e with exponentsm
51.460.1 andn50.560.1. Such a scaling was not found
any previous investigations. We have shown thatP
5g3/2L1/2/e is a fundamental dimensionless parameter in
present system. Combined this withQ5g1/2L3/2/n, all of the
results obtained in simulations have been successfully un
stood.

In this paper we have used nonslip boundary condition
the channel walls. Unlike in viscous fluids, nonslip bounda
conditions are not necessarily satisfied in every case
granular flow@46#. In fact, the general boundary condition
for granular flow is still lacking. However, as noted by Sa
age@26#, the nonslip condition may be realized by providin
wall roughness of the same order as that of the particle
face constituting the granular material, as he achieved in
experiments@26#.
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