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Velocity and density profiles of granular flow in channels using a lattice gas automaton
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Department of Physics, Ochanomizu University, Tokyo 112, Japan
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We have performed two-dimensional lattice-gas-automaton simulations of granular flow between two par-
allel planes. We find that the velocity profiles have nonparabolic distributions, while simultaneously the density
profiles are nonuniform. Under nonslip boundary conditions, deviation of velocity profiles from the parabolic
form of Newtonian fluids is found to be characterized solely by ratio of maximal velocity at the center to the
average velocity, though the ratio depends on the model parameters in a complex manner. We also find that the
maximal velocity (1,5, at the center is a linear function of the driving for@® @su .= @g— & with nonzero
& in contrast with Newtonian fluids. Regarding density profiles, we observe that densities near the boundaries
are higher than those in the center. The width of higher dengtiesve the average densitelative to the
channel width is a decreasing function of a variable which scales with the driving fgyceifergy dissipation
parameter(e), and the width of the systenmlL] asg“L"/e with exponentsu=1.4+0.1 andv=0.5=0.1. A
phenomenological theory based on a scaling argument is presented to interpret these findings.
[S1063-651X97)15306-9

PACS numbefs): 05.20.Dd, 47.50:d, 47.20—k, 46.10+z

I. INTRODUCTION nonuniformly distributed density profiles in granular channel
flow.

Granular materials exhibit many interesting phenomena. Study on granular materials has a long history in engi-
The segregation of particl¢é—4], heap formation, and con- neering. Much engineering literature is devoted to under-
vection cells under vibratiof5—8], and anomalous sound standing how to deal with these materials. However, it is
propagation[9] are just a few examples. Such phenomenaonly after the pioneering work of Bagno[@2] that theoret-
occur because the dynamical responses of granular media d@m@l work has begun to progress. Instead of focusing on the
quite complex and different from those of usual solids, flu-detailed dynamics of individual particles, granular hydrody-
ids, and gasef10-14. Considering the complexity in the namics[23,24 treats the granular media like “fluids.” One
dynamics, one is tempted to study first the granular materialdefines a set of macroscopic gquantities like particle density,
in simple geometries and proceed then to more complicatedelocity, and granular temperature. By assuming local equi-
situations. However, even in the simplest geometries such dibrium [25] one can write down the equations based on mass
hoppers and tubes, their flow under uniform external drivingconservation, momentum conservation, and energy balance.
force (such as gravitystill shows complex dynamickl5—  These equations are similar to the Navier-Stokes equations
21]. For tubes, one can observe density waves in granuldor fluids.
flow when the width of the tubes is narrow enough. Here the Using the idea of hydrodynamics, Savdgé] has studied
friction of the wall, as well as the dissipation among thethe channel flow of cohesionless granular materials and ob-
grains themselves, plays an important role in the occurrenc&ined theoretically the velocity profiles. He obtained the ve-
of density waves. locity profiles under nonslip boundary conditions for differ-

The purpose of this paper is to study granular flow inent parameteR (which depends on the system parameters
channelg(different from tubes with wider widthsand com-  and on the density at the channel centkr the limiting case
pare it with flow of Newtonian fluids. A comparison between of R=0 (which corresponds to the situation where density
granular flow and ordinary fluids is useful because it linksare uniformly distributel the nondimensional velocity pro-
with the knowledge that we have gained before. Besides théle has the form ob =1—x%2, wherev is the velocity nor-
obvious contrast between the discretness of granular mateninalized to 1 with respect to the maximal velocity at the
als and continuum of fluids, a key difference is that collisionscenter,x is the distance from the channel center divided by
of particles in granular flow are inelastienergy dissipative  the half-width of the channel. For largB; the velocity pro-

In fluids, channel flow is a typical and fundamental topic infiles become more bluntetbut without simple analytical
rheology(Poiseuille flow. Under the nonslip boundary con- form). Savagd 26] also performed experiments to measure
ditions valid for viscous fluids, Newtonian fluids have athe velocity profile and found that his experiments corre-
parabolic velocity profile across the channel. To claim thatsponded to the case &=0.3. Since he did not intend to
granular flow is non-Newtonian flow, a nonparabolic veloc-compare his results with those for fluids, his theory did not
ity profile is a clear and fundamental evidence. In this paperrecover the parabolic velocity profile in any limiting case, as
we will report the nonparabolic shape of velocity profiles andhe included from the beginning that the viscosity is propor-
tional to the shear rate22]. However, we find from his ex-
perimental data that the velocity is very close to having a
*Electronic address: peng@phys.ocha.ac.jp parabolic shape.
Electronic address: ohta@phys.ocha.ac.jp In the following we will report our numerical results on
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the velocity profiles. We find that when the dissipation istriangular lattice. The arrangement of the triangle lattice is
very weak the velocity profiles are close to the parabolicdepicted in Fig. (a). At each site there are seven Boolean
shape, while in the other cases they are more blunted thagtates which refer to the velociti€g(k=0,1,2...,6). Here
the parabolic form. As mentioned above, we realize that th%»k(k: 1,2,...,6) are thenearest neighboringNN) lattice
key difference between fluids and granular flow is that the .= .
latter is energy dissipative. Therefore, when the paramete\fectors andco=0 refers to the res(zero_velocny state.
controlling the energy dissipation is switched off, the theory=ach State can be either empty or occupied by a single par-
should recover that of fluids. Furthermore, we observe thaticle. Therefore, the number of particles per site has a maxi-
density near the boundaries is higher than those at the chaf@l value of 7 and a minimal value of 0. In this paper we use
nel center. Our numerical findings are consistent with théhe number of particles per site as density which can there-
earlier experimental observations by Sebal. [27]: “The fore be greater than 1.0. The time evolution of the LGA
nature of the concentration, mass flows, and velocity districonsists of a collision step and a propagation step. In the
butions of solid particles is such that the concentration in<collision step particles change their velocities due to colli-
creases toward the wall of the pipe, mass flow decreasesions and in the subsequent propagation step particles move
toward the wall, and velocity is less than or equal to that ofin the directions of their velocities to the NN sites, where
the stream of the core.” they collide again.

In this paper we study the channel flow by computer The system is updated in parallel. Only the specified col-
simulations. Since a general theory for granular media is naisions shown in Fig. 1 can deviate the trajectories of par-
yet available, people have used various computational methicles. All collisions conserve mass and momentum.
ods to get a better understanding about the complicated rheo- For two- and three-body collisions, we have the probabi-
logical behavior of granular media. Among the different|istic rules shown in Fig. (b). The probability that a configu-
methods are molecular dynamitD) [2,18,29,3Q, Monte 345 may take place is shown next to the configuration. If

Carlo simulations[4,31], the diffusing void model[32], o narametee is nonzero, it means that energy can be dis-
event driven algorithmg33], and cellular automatoi84]. So sipaE[)ed in the collision ' 9y

far, the most widely used method is M35], which simu- Collisions with rest particles may produce more than one

Iatgs'thle grar,:/lutl)a;] magerlals on a m&irOZCOp'C levte » est particle on that site. This is allowed temporarily, as in
grain’s leve). as been recognized 1o be very Successiu ig. 1(c). However, immediately after the collision step, the

in simulating gra_nular mz_iterlaILc36]. MD needs, however, extra rest particles randomly hop to NN sites until they find
much computer time to give reasonable results. To calculatg site with no rest particle and there they stop

the velocity and density profiles one needs a long-time aver- We use no-slip boundary conditions at the channel walls

agt1a_r|]n order to.tgett_reasonablle st?tlst:jcs. lassical fluid that are parallel to thg axis and periodic boundary condi-
€ same situation was aiso faced In classical Tuid Mexq g along the channel. No-slip conditions are employed by

chanics some years ago when Frisch, Hasslacher, a lowi - o -
: owing that any particle colliding with the wall along any
Pomeauj37] proposed lattice-gas automdtzGA) as a novel of the three possible directions bounces back into the incom-

alternative to the direct solution of the equation of motion.ing direction

As a sort of primitive molecular-dynamics system LGA of- We incorporate the driving force, namely, gravity, in the
fers the advantage of guaranteed numerical stability couple\g,ay that Kadanoff McNamara and Zane{BB’] have L;sed
with extreme computational simplicity. The basic idea be'The direction of gr,avity is alon’g the axis, i.e., the down-
hind LGA is that a properly defined cellular automaton with ward arrow in Fig. 1a). After each time s’tep \;ve randomly

g[t)pliopnate ;:_onseg/e:jtlcin_lla:jws shoulid Iea(;i to tTet' Na\ll'eréelect a lattice site and, if possible, apply one of the forcing
oKes equations. etatied comparison ot simulational reg,; q. (i) a rest particle goes into motion with equal prob-

sults from LGA and the well-established theory of Newton- _, ... : L ;
. o T ) ability along one of the two lattice directions which form an
ian fluids in Poiseuille flow can be found in Ref88, 39. angle of 30° with the direction of gravityGii) a moving

The main check to the LGA for the Newtonian dynamics : ; - ; t
. . o particle changes its velocity by a unit vector along the direc-
was the parabolic velocity profile in channel floy&8—40. tion of gravity if the resulting vector is possible on the tri-

t I(T t?r']S papl)er.;/ve er;p:jloy t.rt]e LG?‘I quel of RI@O] r:o ngle lattice used. Each successful application of a forcing
; u yThe I\_/gzc' ]Y;nf zoen.5| y protl es In grf?hu a[GcAanfne ule adds one unit of momentum to the system. The forcing
ow. ihe of Ref.[20] is an extension of the 0 process is repeated until the desired amount of momentum

usual fluids by including energy dissipation among the Ioar'(We label it asG) has been transfered to the system; frac-
ticles into the model. As emphasized above, energy dissip y

e : . ) . Fional amounts of momentum to be added to the system are
tion is a major mechanism by which granular flow differs

from ordinary fluids. The LGA models for granular materials accumulated across time steps until they sum to an amount
yhuias. | : g greater than 1, at which time one additional unit of momen-
were successful in simulating granular fl¢20,41-43.

This ris oraanized as follows. We describe the mod m is added to the gas. The actual forcing scheme is slightly
: Paper IS organized as 101lows. Ve describe the modeg, , o complicated since it must compensate for inhomogene-
in some detail in Sec. Il. The results obtained by S|mulat|on§t

) . Ity in the momentum and number densities due to the mac-
are presented in Sec. Ill. A phenomenological argument i

. . . Toscopic flow(see also Ref[38]). The forcing algorithm
madg |n.Sec. lV. to understand the numerical results. A dlsFandomly selects a lattice row and column and then searches
cussion is contained in Sec. V.

along that column until it finds a site where a forcing rule

Il. SIMULATIONAL MODEL may b_e sucqessfully. applied.. This guarantees that. forcing
operations will be uniformly distributed across the width of
We consider an LGA at integer time steps0,1,2...  the channel, despite variations in the mass and momentum

with N particles located at the sites of a two-dimensionaldensities. It is noted that the magnitude of the gravity cannot
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FIG. 2. Total kinetic energ§ vs time step by running the LGA

moving particle is taken to be a unit. The plotted curve was ob-

\ / starting from a random initial configuration. The kinetic energy of a

tained withe=0.01. The total momentum added to the system each
time is G=7.0, channel widthL=64, and average density
=15.

be extremely large in our model system due to the following
fact: on one hand the maximal velocity at the channel cen-

ter increases with the increasing gravity, on the other hand
the LGA only guarantees a velocity less than unit.
o = 3E

N

/ Ill. SIMULATIONAL RESULTS
o (1-e)2 _/ (1-¢)2 ) o
We evolve the system according to the collision rules de-
/ fined above. The initial configuration of the system is set to
\ be random in the sense that every statecept the rest state
of each site is randomly occupied according to a preassigned
average densitp. We discard the configurations in the first
period of several thousand time steps until we are sure that
the system is in the steady state where energy input by grav-
/ ity is averagely equal to the energy dissipation in the system.
Figure 2 shows a typical curve of the total kinetic energy
(1-€)12 relaxation starting from a random configuration at time step
t=0.
FIG. 1. (a) Sketch of the two-dimensional triangle lattice. Grav- theArflt:ét;{ggal;ygggrzgir%zg?;\;zgsi?\g?isn:g;‘;s\,\:%ltlg\?vg T_Zliis
ity is along they direction. One complete hexagon is drawh) )

Probabilistic collision rules for two- and three-body collisions. Thin !abel the pa!rtlcle_ number _Of State(k=0,1,g...,6) on the
arrows represent particles and small circles stand for rest particlest 1attice site with coordinatesx(,y;) at time stept as
The number next to a configuration is the probability that the con(Xi,¥i ). As depicted in Fig. (&), the x coordinates of
figuration takes placdc) Collision rules for moving particles with  1attice sites take values of integers and half-integers of
a rest particle. Immediately after the collision, more than one resP,1/2,1....L—1, while they coordinates have values of
particle on a site will hop to the nearest neighboring sites randomif,1/2,1...,M —1 with M even. The total number of lattice

until they find a suitable site with no rest particle already there. sites isSN=LM —M/2. In this paper, we always kedd

Q0

() (1-€)/2
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=2L and fix the average density=1.5 unless otherwise
specified.

We are interested in the density profiléx) and velocity
profile in y-directionu(x) =V, (x) with x integer

totT N 6

1
POO= 270 2, 2 & MO YD 8]0, ()

STV (o, 2 2 O MxiYi D 3([xi] =),
@)

where the functioriz] takes the integer value of its variable
z and functiond(z) is equal to 1 wherz=0 and zero other-
wise. 6= (cV,c{?) = (cog m(k—1)/3], sinm(k—1)/3]) for
(k=1,2,...,6) are thenit vectors of the lattice bond orien-

u(x)=

tation (and 60=5). We actually make average over the two
column whose coordinates have the same integer part, they

are columns withk; (integed andx; + 3(half-intege¥; there-
fore, the normalization factor is 1TM, whereT is the time

period over which we make average starting from time stej

to. T is usually several tens of thousand time steps.

As a first step, we check that when the dissipation param
etere is set to zero we recover the parabolic velocity profile

of Newtonian fluids. This is shown in Fig(& for system
sizeL=64 with average density=1.8. From Fig. 8 we
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can estimate the magnitude of the kinematic viscosity eque

to 0.35 according to Ref38]. Meanwhile, the density profile

in Fig. 3b) is just a flat curve, showing that density is uni-

formly distributed.
Figures 4a) and 4b) show the velocity and density pro-
files when energy dissipation witt=0.01 is present in the

system. We see clearly that the parabolic velocity profile is
no longer kept in this case, but more blunted. In fact, a para
bolic curve demanding the maximum value at the cente
equal to the numerical data and zero at the two boundarie
deviates substantially from the numerical data. It is also re
marked that the density is not uniformly distributed, in con-

trast with those of Newtonian fluids.

Regarding the velocity profile, we can generally write the

following equation:

, 3

X
U(X) = Umax e,g,L)’J(E,eL"l,gL"2

whereu, . is the maximum velocity. Here gravity is taken to
be system size independent quangjty G/N, whereG is the

total amount of momentum added to the system after eac

time step andN is the total number of lattice sites.

A simple measure of the flatness of velocity profiles is the

ratio y=Upa/U, Whereu is the mean value ofi(x). It is

equal to 1.5 for Poiseuille flow of Newtonian fluids and 1.0

for a perfectly flat profile. Note thap can be written as

1
y_1=f U(x,eL1,gL2)dx. (4)
0

Figure 5 displays the ratig versus gravity for two differ-
ent dissipation parametees=0.01 ande=0.02 with differ-
ent channel widths. From Fig. 5 we seedepends on the

0 10 20 30 40 50 60
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9 | |
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oL 1 1 L I N B
0 10 20 30 40 50 60
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FIG. 3. (a) Velocity profile for the LGA withe set to zero. Here
the total momentum added to the system each tin@&=isl.0, chan-
nel widthL =64, and average densipy=1.8. The curve is the best
(least-squarefit to the numerical data using a polynomial fitting
rountine up to second ordefh) Density profile corresponding to

channel width, degrees of dissipation, and gravity. We finda).
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FIG. 4. (a) Velocity profile for the LGA withe=0.01. Here the
total momentum added to the system each tim@4s7.0, channel
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FIG. 5. Ratio y=up./U vs gravity g for different channel
widths L =32, 48, 64, 128from top to bottom with ¢=0.01 (data
points connected by solid lineand e=0.02 (data points connected
by dashed lings

that y can be solely used to characterize the shape function
U(x,eL71,gL72). Taking two sets of different parameters
which leads to almost identical, e.g.,{e;=0.01, G;=8.0,
L,=64} and {e,=0.02, G,=10.0, L,=48} resulting v,
=1.275 94 andy,=1.282 98, we show in Fig. 6 that their
shape functions are almost identical. Note that both sets of
parameterge,g,L} share no common value but their result-
ing y are almost identical. For comparison, the velocity pro-
file for a different value ofy=1.359 06 is also plotted in Fig.

6. As expressed in Eq4), y ! is the Oth moment of the
distribution functionu(x). Figure 6 tells us that the distribu-
tion functionU has such a property that as long as the Oth
moment is determined higher order moments are determined.
This may suggest that the parametgesg,L} combine to
give a scalar on whichi(x) depends solely.

In order to fit the velocity data, we have tried the polyno-
mial fitting routines. We find that a polynomial up to an
order of 4 is not sufficient; most of the data can be fitted by
a polynomial up to an order of 6:

U(X)=vo—v(X—C)2—v4(x—C)*~vg(x—0)% (5
wherex is the normalized coordinate in the intery@l1] and
c is the coordinate of the channel center. The three velocity

width L=64, and average densiy=1.5. The upper curve is the Profiles are fitted using Eq5) in Fig. 6. In the next section,

best(least-squanefit to the numerical data using a polynomial fit- Which is based on a phenomenological theory, we will pro-
ting rountine up to second order and the lower curve is a paraboli®0se a formula for velocity profiles where the dependences
curve by demanding the maximal value at the center equal to thef these fitting parameters on the model parameters

numerical data and zero at the two boundaribs.Density profile

corresponding tda).

{€,0,L} are clearly expressed and we will check our theory
by the simulational data.
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FIG. 6. Normalized shape functiar(x) as a function ok in the FIG. 7. Upa vs gravity g for four different channel width&
interval [0:1]. Two curves corresponding the=0.02, L=48, G L=32, 48, 64, 128from bottom to top and fore=0.02. The lines
=10.0(g=0.004 340 28) () and {e=0.01, L=64, G=8.0(g are least-squares linear fit to the numerical data. Four lines cut the

=0.001 953 12) (+) are almost identical, though the two set pa- vertical axis at nonzero positions that are very close to each other.
rameters share no common value. Another citecorresponding ) o

to {e=0.02, L=48, G=5.0(g=0.002 170 14) is shown for com- and different dissipation parameters. Generallyl de-
parison. This curve shares two parametesndL with the curve ~ Creases with increasirggand increasing but increases with
(©) but their difference is obvious. Lines are best fit to the numeri-increasinge. The scattered data in Fig(e3 can be scaled to
cal data using a polynomial fitting rountine up to 6th order as ex-one curve, as shown in Fig(l§, where we plotA/L versus
pressed in Eq(5). The fitting parameters arg=0.999 664,v, g“L"/e. We find that the exponents are=1.4+0.1 andv

=1.257 89, v,=—0.516 35, vg=53.8739, c=0.493 339 (<), =0.5=0.1.

{v,=0.998 367,v,=1.353 65, v,= —1.837 73, v5=55.4401, c We have checked that the above observations do not
=0.494999 (+), and {vo=0.997691, v,=1.81431, v,  change their properties qualitatively as we change the aver-
=4.977 92,v4=20.8538,c=0.493 152 (O)). age densityp. The scaling exponentg and v are indepen-

dent of the average density.
For uya{€,a.L), we find that it is a linear function af as

Umax{(€,0,L)=ag— & with nonzeroé. Figure 7 displays four IV. PHENOMENOLOGICAL THEORY
curves ofu,,, for different channel widths but with fixed ] . )
The slopea depends or. but not asL? which is valid for In this section we present a phenomenological theory to

Newtonian fluids. If we increase the value ofw decreases. interpret our numerical findings. We note that there are two
Nonzeros means that the driving force must exceed a nonimportant system parameters, namedyand e: g is the
zero threshold §/@) in order to drive the granular media Velocity change per particle per time step ands energy
into motion. From the statistics we are not sure whethisr ~ dissipation per particle per time step. Therefore, using di-
independent of. but one can see from Fig. 7 that the depen-mension analysis, we have

dence is very weak, if any. Furthermore, although not shown

in the figure, we find thad have a tendency to approach zero _ d_V = d_E
as e approaches zero, which recovers the case of Newtonian 9 dt’ dt’
fluids.

Regarding the density profile, we observe that densitiesvhereV andE are characteristic velocity and kinetic energy
near the walls are higher than those at the channel center, if a particle. Hereafter we set the particle’s mass to unity.
contrast to the uniform density distribution of Newtonian SinceV2~E, gV/e must be dimensionless.
fluids. A simple way to characterize the spatial variation isto We may construct a quantity that has a dimension of ve-
define a width over which densities are higher than the avlocity by using the channel width as
erage density. We plot such a width) divided by channel
width in Fig. 8a) against gravityg for different system sizes V= gL. @

(6)
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The above argument implies thBtdefined as

—

vV 3/2L 1/2
p- =9

€ €

®

f??f@??

must be a fundamental dimensionless quantity. Equdgpn
05 | _ is consistent with the simulations illustrated in Figbg
\ whereA/L is a function of a variable that scales g6 "/ e
with exponentsu=1.4+0.1 andv=0.5+0.1.
07 . Note that whene=0, the system has another dimension-
less quantity that can be derived from the Newtonian hydro-
dynamics equation

AJL os} 1
g+ vV =0, 9
05 - y wherev=pu/p is the kinematic viscosity. The two terms in
Eq. (9) have the same dimension; therefore,
04 - L2 L2 1/2L3/2
_9r_ 9 9 10
AVNATE v
03 i is another dimensionless quantity. Note in Et0) we have
used Eq(7). Q is in fact the square root of the Reynolds
0.2 1 1 1 il 1 1 L 1 number'
0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005 Now, we consider the maximum velocity,,,, at the
channel center. Simulations show thgt,, is a linear func-
(a) g tion of g,
1 | T T T T T T T Umnax— ag— 0. (11)
A S—
oo We determine the forms af and 6. First of all, they do
0.9 79 D not depend owg by definition. Using Eq(7), @ must take the
F #— form
G o—
08 | L)\ 12
az(a) a(P,Q). (12
“Tr The form of & can be determined by the following condi-
tions: (i) a (instead ofa) is independent ofy; (ii) when
AJL os} e—0 (P—®), Un=9L%v. The simplest interpolation for-
mula for « is given by
1
0.5 ~
TP Brc,Q T (13

04

wherec,,c, are dimensionless positive numerical constants.
In fact, we have

0.3 _
ag=gL

oo L— 1 1 t 1 1
0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

1

€ 1/3 v
Cl(ﬂ) +Co —173m
gri gL

gVL
(b) g'L" /e = e |13 g (14
Cl(l_—m tC2am
FIG. 8. (a) Width of higher densitiegthan average densijty

relative to the channel width/L are plotted vs the gravitg for ~ 1herefore,
different channel widths and different dissipation parameters. A:
{e=0.01, L=32, B: {€e=0.01, L=128, C: {€=0.02, o L (15
L=48, D: {e=0.02, L=64}, E: {€=0.02, L=128, F: {e ¢ (eL)P+c v/l

=0.04,L=48}, G: {e=0.04,L=064}. (b) Data collapse ofa):
A/L are plotted vgg#L"*/e with u=1.4 andv=0.5. When e=0, we recover the well-known result
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FIG. 9. @ vs L¥3 for e=0.01(¢) ande=0.02(+).

gL’
Umax™ T (16)
When e— o, Eg. (15 shows
L2/3
a= Cleg (17)

Our numerical results also show thatdecreases with in-
creasinge, in the trend of Eq(17). TheL??is even reached
in the simulations withe=0.02. This is illustrated in Fig. 9.
From Eq.(15) one may see that as long ass nonzero, the
term withc,; dominates the denominator for large leading
to the validity of Eq.(17).

Now we determines. It should vanish at=0 and be
independent ofj for any nonzero value of. Using again the
fact of Eq.(7), 6 should be given by

5=c3gLP 3 (P/Q3) =c4(eL) R (P/Q3), (18
wherec, is a positive constant. Note thRt Q3= 13/(eL?) is
independent ofy. It seems that the form df(x) cannot be
specified phenomenologically. If we impose the fact thiat
insensitive toL as observed in simulation$(x) must be
f(x)~x*1? so that we have

5= Cql el ) V3pe= 112 ~13— ¢ (¢pp)14, (19)

Now we turn to the shape functian(x) of velocity pro-

file. Since from the simulations we know the velocity profile
can be well fit using polynominal up to sixth order, we pro-

pose phenomenologically
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FIG. 10. Data collapse Fig. 5:y vs '=10 °g*2."%. Sym-
bols are the same as those in Fig. 5. Solid line is the best fit to the
numerical data using Eq24). The logarithm of horizontal axis is
made for clarity of displaying data. The fitting parameters in Eq.
(24) ared=0.009 774 8,e=—0.350 605 and=0.002 689 41.

U(X)=1—4u,(x—1/2)2— 16u,(x— 1/2)*— 64ug(x— 1/2)®,
(20

where the coefficients,, u,, ug are functions ofe, g, and
L.

As expressed in Eq4), the Oth moment ofi(x) is char-
acterized byy. We find numerically that the scattered data of
vin Fig. 5 can be collapsed to one curve by using a combi-
nation of the dimensionless quantitiés and Q: Q%P
=g'2.12¢/*. Figure 10 illustrates this point by plotting
againsi =10~ °g*2_ "% for the data of Fig. 5. We propose
that the coefficientsi,, u,, ug in Eq. (20) are functions of”
and we determine their forms as follows.

Settingx=0 in Eq. (20) and requiringu(0)=u(1)=0,
we know thatu,,u,,ug are related by

U2+U4+U6:1. (21)

So we need only to determing andu,, which must satisfy
the following conditions: (i) when €=0, u,=1, u,=0
which recovers the parabolic velocity profile for fluidg;)
whene— o, the velocity profile becomes completely flat and
thereforeu,=0, u,=0. We proposal, andu, as functions
of I',

1

Us=7 7 gF (22)



55 VELOCITY AND DENSITY PROFILES OF GRANULR ... 6819

el near the boundaries than at the center. From the simulations
Us=17hr2 (23)  we note that this nonuniformity is caused by the rest particles

while the moving particles are distributed uniformly. This

whered, e, h are constants. Substituting the above exprestay have a link to the clustering of dissipative syst¢#¥.
sions into Eq(20) and integrating that equation we obtain The boundaries that are represented by rough walls seem to
serve as clustering seeds due to the nonslip boundary condi-

20 6el’ tions we used. An earlier experiment by S¢a7] also
NV —= T ;
90— 20u,— 6u, 1+dll 1+hr? showed that density increases toward the wall, as we find
y 1l= 105 = 105 . (29 here. It is interesting to note that the recent experiment of

Pouliquen and Gutfrainf45] showed that density near the

We check the above expressions by fitting the numerical dat@ll is lower than that at the center. We attribute this con-
of y using Eq.(24). This is shown in Fig. 10. One sees that tradiction with our numerical results to the different bound-
the fitting is very well except foy close to 1.0 correspond- &Y conditions. In their experiments, con&dergble sllp veloci-
ing to rather flat velocity profiles wherex - 1/2)8 might be ~ ti€éS were observed at the walls. Both increasing and
necessary in Eq20)]. Finally we make a remark that veloc- decreasing density profiles toward the walls in different re-
ity profile such thafli(x)=1—u,(x— 1/2)*— 4u,(x— 1/2)? gimes were obtained theoretically in REZ8] and both kinds

with 0<w<2 is not in accord withy shown in Fig. 5. of experimental evidences were cited there. ,
In our model we find that the width of the region of higher

densities(than the average densjtyelative to the channel
width is a decreasing function of a variable which scales with
In this paper we have numerically studied the granulathe driving force ), energy dissipation parametés), and
flow in channels using a two-dimensional lattice gas automathe width of the systeml() as g#L”/e with exponentsu
ton model. We have explored the dependences of velocity 1.4+ 0.1 andv=0.5+0.1. Such a scaling was not found in
profile on dissipation, gravity, and channel width and com-any previous investigations. We have shown tHat
pared them with those of Newtonian fluids. Parabolic veloc-=g*?.'%¢ is a fundamental dimensionless parameter in the
ity profile is no longer valid as long as there is energy dissi-present system. Combined this with=g2L%% v, all of the
pation in the system. However, the deviation from paraboliaesults obtained in simulations have been successfully under-
profile depends on the degree of energy dissipation in atood.
smooth way(there is no sharp transition near=0). This In this paper we have used nonslip boundary conditions at
may explain the fact that the experimental data of Savagéhe channel walls. Unlike in viscous fluids, nonslip boundary
[26] is close to a parabolic velocity profile, though he did notconditions are not necessarily satisfied in every case of
notice this point in his paper. However, the velocity profile granular flow[46]. In fact, the general boundary conditions
can also be very flat depending on the dissipation and théor granular flow is still lacking. However, as noted by Sav-
channel width. The observation of S¢a7] confirms this age[26], the nonslip condition may be realized by providing
point experimentally. Our results also show that the velocitywall roughness of the same order as that of the particle sur-
profiles are more blunted than the parabolic form. We do noface constituting the granular material, as he achieved in his
find any velocity profile that is sharper than parabolic shapexperimentg26].
(i.e. our y are all less than 1)5in contrast with Savage'’s
theory[26], which predicted that profiles sharper than para-
bolic ones are possible to exist. The maximal velocity at the
center is a linear function of gravity ag,,,=ag— & but with This work was supported by Grant-in-Aid of Ministry of
nonzerod. Herea behaves no longer 4s’ as for Newtonian  Education, Science and Culture of Japan. G.P. thanks the
fluids. Density profiles are no longer uniform but are higherJapan Society for the Promotion of Science.

V. DISCUSSION
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